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Abstract. Piezoelectric materials can be used either as actuators connected to an appropriate control law to provide
active vibration control or as sensors connected to shunt circuits to provide passive damping. In the last decade, research
was redirected to combined active and passive vibration control techniques. One of these techniques, so-called Active-
Passive Piezoelectric Networks (APPN), integrates an active voltage source with a passive resistance-inductance shunt
circuit to a piezoelectric sensor/actuator. It has been shown that combined active-passive vibration control allows better
performance with smaller cost than separate active and passive control, provided the simultaneous action is optimized. On
the other hand, like for purely passive shunted piezoelectric damping, most of the studies concerning APPN focus on the
optimization of the electric circuit architecture and components. In particular, a main issue for resonant shunt circuits is
the high values of inductance needed when low frequency modes are to be controlled which normally requires the use of a
synthetic inductance and, also, the need for a fine tuning of the circuit parameters with structural natural frequencies and
electromechanical coupling coefficient. Another issue is the sensitivity of the control design and performance to the circuit
components and structural natural frequencies. Some simple formulas were proposed for the quantification of the effect
of resonant shunt circuits impedances uncertainties on the passive damping performance. This work presents an analysis
of active-passive vibration control using APPN subject to parametric uncertainties in the shunt circuit components and
piezoelectric material properties. This is done using a recently developed finite element model, which fully accounts for the
structure/piezoelectric elements/circuits interaction, combined to stochastic modeling techniques to evaluate confidence
intervals for the vibration control performance. Results for the first vibration mode of a cantilever beam with piezoceramic
patches connected to active-passive shunt circuits are presented and discussed. In particular, the combination of active
and passive control mechanisms and its effects on the control performance and its confidence intervals are discussed.

Keywords. Active-passive piezoelectric networks, uncertainties, piezoelectric materials, vibration control, resonant shunt
circuits

1 INTRODUCTION
Piezoelectric materials, and especially piezoelectric composites such as multilayered plates including active piezo-

electric layers are excellent candidates for designing adaptive devices for shape and vibration control of elastic structures.
Such devices and piezoelectric composites are of great technological interest in structural engineering with applications
to noise reduction or shape control of large flexible structures. Most modellings of piezoelectric actuators or composites
consider laminated structures made of continuous piezoelectric layers. This is due to their strong electromechanical cou-
pling of the piezoelectric materials making widely used as sensors and actuators for structural vibration control. They
can be used either as actuators connected to an appropriate control law to provide active vibration control or as sensors
connected to shunt circuits to provide passive damping. In the last decade, research was redirected to combined active and
passive vibration control techniques. One of these techniques, so-called Active-Passive Piezoelectric Networks (APPN),
integrates an active voltage source with a passive resistance-inductance shunt circuit to a piezoelectric sensor/actuator
(Tsai and Wang, 1999). In this case, the piezoelectric material serves two purposes. First, the vibration strain energy of
the structure can be transferred to the shunt circuit, through the difference of electric potential induced in the piezoelectric
material electrodes, and then passively dissipated in the electric components of the shunt circuit (Forward, 1979; Hagood
and von Flotow, 1991, Viana and Steffen, 2006). On the other hand, the piezoelectric material may also serve as an
actuator for which a control voltage can be applied to actively control the structural vibrations. This active mechanism
combined to a velocity feedback, for instance, may then induce an additional active damping in the structure.

There are still some unresolved issues concerning this active-passive damping mechanism such as for which conditions
simultaneous active-passive damping outperforms separate active and passive mechanisms, that is, whether the control
voltage should be part of the shunt circuit or not (Thornburgh and Chattopadhyay, 2003). It has been shown that combined
active-passive vibration control allows better performance with smaller cost than separate active and passive control, pro-
vided the simultaneous action is optimized (Tsai and Wang, 1999). On the other hand, like for purely passive shunted
piezoelectric damping, most of the studies concerning APPN focus on the optimization of the electric circuit architecture
and components. It is well-known however that the performance of both active and passive damping mechanisms is highly
dependent on the effective electromechanical coupling provided by the piezoelectric actuators/sensors. Nevertheless, few
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studies focus on the optimization of this coupling for given structure and piezoelectric material. In particular, it has been
shown that piezoelectric actuators using their thickness-shear mode can be more effective than surface-mounted extension
piezoelectric actuators for both active (Trindade, Benjeddou and Ohayon, 1999; Raja, Prathap and Sinha, 2002; Bail-
largeon and Vel, 2005; Trindade and Benjeddou, 2006) and passive (Benjeddou and Ranger-Vieillard, 2004; Benjeddou,
2007; Trindade and Maio, 2008) vibration damping. One of the reasons for that is the thickness-shear electromechanical
coupling coefficient k15 that is normally twice the value of the extension one k31, which may lead to a higher effective
electromechanical coupling coefficient (Trindade and Benjeddou, 2009). The thickness-shear mode, originally proposed
by Sun and Zhang (1995), can be obtained using longitudinally-poled piezoelectric patches that couple through-thickness
electric fields/displacements and shear strains/stresses. On the other hand, although it is well-known that the performance
of shunt circuits is quite sensible to the tuning of circuit parameters, little has been published about the complexities in
tuning the electric circuit parameters and the effect of the parametric variations on the overall performance of the system
(Viana and Steffen, 2006; Andreaus and Porfiri, 2007).

This work presents an analysis of active-passive vibration control using APPN subject to parametric uncertainties in
the shunt circuit components, resistance and inductance, and piezoceramic material dielectric and piezoelectric proper-
ties. This is done using a recently developed finite element model, which fully accounts for the structure/piezoelectric
elements/circuits interaction, combined to stochastic modeling techniques to evaluate confidence intervals for the vibra-
tion control performance. Results for the first vibration mode of a cantilever beam with piezoceramic patches connected
to active-passive shunt circuits are presented and discussed.

2 FINITE ELEMENT MODEL OF PIEZOELECTRIC SANDWICH BEAMS
A sandwich beam made of piezoelectric layers and modeled using classical sandwich theory was considered. Surface

layers and core layer are made of transversely poled and longitudinally poled piezoelectric materials, respectively. Elec-
trodes fully cover the top and bottom skins of all layers so that only through-thickness electric field and displacement are
considered. For simplicity, all layers are assumed to be made of orthotropic piezoelectric materials, perfectly bonded and
in plane stress state. Bernoulli-Euler theory is retained for the sandwich beam surface layers, while the core is assumed
to behave as a Timoshenko beam. It is supposed that each piezoelectric layer can be connected to an electric circuit com-
posed of inductance Lc j, resistance Rc j and voltage source Vc j in series. Based on these assumptions, a two-node beam
finite element model was developed with four mechanical and three electrical degrees of freedom per node. The electric
displacements in each layer were considered as electrical degrees of freedom. More details on the finite element model
can be found in (Santos and Trindade, 2011).

Accounting for equipotentiality on electrodes covering piezoelectric patches surfaces and the relation between electric
charges on circuits and patches, the structure-patches-circuits coupled equations of motion can be written as

[
M 0
0 Lc

]{
ü
q̈p

}
+

[
C 0
0 Rc

]{
u̇
q̇p

}
+

[
Km −K̄me
−K̄t

me K̄e

]{
u
qp

}
=

{
F
Vc

}
, (1)

where u and qp are the global mechanical displacement and electric charge dofs and M, Km, K̄me, K̄e are the mass and
mechanical, piezoelectric and dielectric stiffness matrices and F is the mechanical force vector. Lc and Rc are diagonal
matrices containing the inductance and resistance and Vc is the vector of electric voltage applied to the electric shunt
circuits. A structural damping matrix C can be added a posteriori.

3 PASSIVE AND ACTIVE VIBRATION CONTROL DESIGN
From (1), it is possible to observe that the shunt circuit can affect the structural response either passively through

coupling of the dynamics of circuit and structure, via the piezoelectric patches, or actively through the application of an
electric voltage in the circuit which excites the structure, also via the piezoelectric patches. These effects can be better
observed in a frequency response function (FRF) of the structure when subjected to a mechanical or electrical excitation.

For a purely mechanical excitation, such that Vc = 0 and F = b f̃ ejωt , the amplitude of a displacement output y = cu
can be written such that ỹ = Gp(ω) f̃ , where the FRF Gp(ω) is

Gp(ω) = c
{
−ω

2M+ jωC+Km− K̄me(−ω
2Lc + jωRc + K̄e)

−1K̄t
me
}−1b, (2)

from which, it is possible to notice that the resistance and inductance have the effect of changing the dynamic stiffness
of the structure. Two particular cases of interest can be derived: i) open-circuit when Rc→ ∞ and ii) short-circuit when
Lc = Rc = 0, in which cases

GOC
p (ω) = c

{
−ω

2M+ jωC+Km
}−1 b,

GSC
p (ω) = c

{
−ω

2M+ jωC+Km− K̄meK̄−1
e K̄t

me
}−1 b.

(3)

As expected, no structural modification is observed in the open-circuit case while, for the short-circuit case, the
stiffness of the piezoelectric patches is reduced.

For a purely electric excitation using a single pair patch-circuit, such that F = 0 and Vc = Ṽcejωt , the FRF between the
output y and the applied voltage Vc is such that ỹ = Gc(ω)Ṽc, where
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Gc(ω) = c
{
−ω

2M+ jωC+Km− K̄me(−ω
2Lc + jωRc + K̄e)

−1K̄t
me
}−1K̄me(−ω

2Lc + jωRc + K̄e)
−1 (4)

In this case, the resistance and inductance of the electric circuit have two effects. The first is a modification on the
dynamic stiffness of the structure as in the previous case. The second is a modification of amplitude of the equivalent
force input induced in the structure by the applied voltage, which for a properly adjusted circuit can lead to a desirable
amplification of the control authority of the pair patch-circuit. The particular case of a simple voltage actuator can be
derived by making Lc = Rc = 0, for which

GV
c (ω) = c

{
−ω

2M+ jωC+Km− K̄meK̄−1
e K̄t

me
}−1 K̄meK̄−1

e (5)

3.1 Passive vibration control using electromechanical vibration absorbers
Starting from the equations of motion (1) for the case of a single passive electric shunt circuit (RL) connected to

a piezoelectric patch embedded in the structure, it is desired to apply the theory of dynamic vibration absorbers for a
particular vibration mode of interest. Therefore, the structural response is approximated by the contribution of a single
vibration mode of interest such that

u(t) = φnαn(t), (6)

where φn and αn are the vibration mode of interest and its corresponding modal displacement. Thus, neglecting the
structural damping, the equations of motion for the resulting two degree of freedom system can be written as

α̈n +ω
2
n αn− kpqp = bn f ,

Lcq̈p +Rcq̇p + K̄eqp− kpαn = 0,
(7)

where φ t
nMφn = 1, φ t

nKmφn = ω2
n , kp = φ t

nK̄me and bn = φ t
nb.

Assuming a mechanical excitation through input f , the structural response measured by a displacement output y =
cnαn, where cn = cφn, can be written such that its amplitude is ỹ = Gp(ω) f̃ , where the amplitude of the FRF Gp(ω) is

|Gp(ω)|= cnbn
[
(−ω

2Lc + K̄e)
2 +(ωRc)

2]1/2×{
[ω4Lc−ω

2(K̄e +Lcωn
2)+ K̄eωn

2− kp
2]2 +[(−ω

2 +ωn
2)ωRc]

2
}−1/2

. (8)

For limited values of Rc, |Gp(ω)| have an anti-resonance at a frequency equal to the resonance frequency of the electrical
circuit, defined as ωe = (K̄e/Lc)

1/2, which can be designed to match the structural resonance of interest ωn. This leads to
an expression for Lc in terms of ωn, such that

Lc =
K̄e

ω2
n
. (9)

From the theory of dynamic vibration absorbers, it is known that the anti-resonance is accompanied by two resonances
which may have their amplitudes controlled by the electric circuit resistance Rc. One strategy to design the damping
parameter is to minimize the difference between the resonances and anti-resonance amplitudes. This can be done by first
using limRc→0 |Gp(ω)|2 = limRc→∞ |Gp(ω)|2 to find the frequencies for which the amplitude is independent of damping
parameter which are

ω
2
1,2 =

1
2

[
ω

2
e +ω

2
n ±
√
(ω2

e −ω2
n )

2 +2ω2
e (k2

p/K̄e)
]
. (10)

Equalizing the vibration amplitudes at one of these invariant frequencies ω1 and at the anti-resonance frequency ωn
leads to an expression for the resistance Rc in terms of the equivalent coupling stiffness kp, electrical stiffness K̄e and
structural resonance frequency of interest ωn,

Rc =
kp
√

2K̄e

ω2
n

. (11)
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3.2 Active vibration control using piezoelectric actuators and state feedback
A state feedback LQR (Linear Quadratic Regulator) optimal control is considered. For that, it is necessary to rewrite

the equations of motion (1) in state space form, such that a vector of state variables z is defined, containing the modal
displacements and velocities of a series of vibration modes of interest and the electric displacements of the piezoelectric
patches and their time-derivatives. This leads to

ż = Âz+ B̂Vc + B̂ f f , y = Ĉyz, (12)

where
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qp
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0 0 I 0
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−Ω2 Kp −Λ 0
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c Kt

p −Ω2
e 0 −Λe

 ,
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 0
0
0

L−1
c

 , B̂ f =

 0
0

bφ

0

 , Ĉy = [cφ 0 0 0] .

(13)

The modal displacements are such that u = Φα and, for mass normalized vibration modes, Ω2 = ΦtKmΦ and Λ =
ΦtCΦ. Ω is a diagonal matrix which elements are the undamped natural frequencies of the structure with piezoelectric
patches in open-circuit. Ω2

e = L−1
c K̄e and Λe = L−1

c Rc are both diagonal matrices which elements stand, respectively,
for the squared natural frequencies of the electric circuits and the ratio between the resistances and inductances. The
electromechanical coupling stiffness matrix projected in the undamped modal basis is defined as Kp = ΦtK̄me. Input b
and output c distribution vectors are also defined, with modal projections bφ = Φtb and cφ = cΦ, and f is a vector of the
amplitudes of each mechanical force applied to the structure.

A linear state feedback for the applied voltages Vc is assumed such that Vc =−gz =−gdmα−gdeqp−gvmα̇−gveq̇p,
where g is a matrix of control gains for each state variable. Therefore, the state space equation (12) becomes

ż = (Â− B̂g)z+ B̂ f f , y = Ĉyz. (14)

For a single-input mechanical excitation f , the closed-loop or controlled amplitude of a single displacement output y
can be written such that ỹ = Gh(ω) f̃ , where the FRF Gh(ω) is

Gh(ω) = Ĉy(jωI− Â+ B̂g)−1B̂ f , (15)

which can also be derived from the second order equations of motion projected into the undamped modal basis leading to

Gh(ω) = cφ

{
−ω

2I+ jω(Λ+KpD−1
cc gvm)+ [Ω2 +KpD−1

cc (gdm−Kt
p)]
}−1bφ , (16)

where the closed-loop dynamic stiffness of the electric circuit Dcc is

Dcc =−ω
2Lc + jω(Rc +gve)+(K̄e +gde). (17)

In this work, the control gain g is calculated using the standard optimal LQR control theory applied to a single-
input/single-output case, that is with only one active-passive patch-circuit pair for the control to minimize the vibration
amplitude at one specific location of the structure, such that the following objective function is minimized

J =
1
2

∫
∞

0

(
ẏ2 + rV 2

c
)

dt, (18)

where ẏ is the velocity at one location of interest and Vc is the control voltage applied to the active-passive shunt circuit.
The weighting factor r is automatically adjusted to guarantee a maximum control voltage of 200 V in all cases following
an iterative routine proposed in (Trindade, Benjeddou and Ohayon, 1999).

4 NOMINAL MODEL RESULTS AND DISCUSSION
In this section, the FRFs of cantilever beam configuration, with extension piezoceramic as shown in Figure 1, are

analyzed in order to evaluate the APPN performance in terms of passive damping, control authority and active-passive
damping. The extension piezoceramics are made of PZT-5H material whose properties are: c̄D

11 = 97.767 GPa, c̄D
33 =

119.71 GPa, cD
55 = 42.217 GPa, ρ = 7500 kg m−3, piezoelectric coupling constants h̄31 = −1.3520 109 N C−1 and



Proceedings of the 1st International Symposium on Uncertainty Quantification and Stochastic Modeling
February 26th to March 2nd, 2012, Maresias, São Sebastião, SP, Brazil

25
220

3.0
0.5

Piezoceramic Aluminum

10

LR
source
Voltage

Shunt circuit

Output

External input

Control input

Figure 1: Representation of cantilever beam with piezoceramic patches in extension

h15 = 1.1288 109 N C−1, and dielectric constants β̄ ε
33 = 57.830 106 m F−1 and β ε

11 = 66.267 106 m F−1. For the
Aluminium beam, material properties are: Young’s modulus 70.3 GPa and density 2710 kg m−3 and, for the foam,
Young’s modulus 35.3 MPa, density 32 kg m−3 and a viscous damping of 0.5% were considered.

The beam with extension piezoelectric patch is analyzed. The resistance and inductance were tuned to the first reso-
nance frequency, using the methodology developed before (Santos and Trindade, 2011). Notice however that the values
obtained using (9) and (11), Rc = 34117 Ω and Lc = 406 H, are just a first approximation to the optimal values and had
to be fine-tuned manually to Rc = 31541 Ω and Lc = 390 H. The purely passive action is obtained by eliminating the
voltage source and the purely active action is obtained by making Rc = Lc = 0. For the general case, the inductance and
resistance not only modify the dynamic stiffness of the structure, leading to damping and/or absorption, but also affects
the active control authority of the actuator.
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Figure 3: Frequency response of cantilever beam using passive
and active-passive shunt circuits: GOC

p (dotted), GR
p (fine dot),
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h (dashed), GRL

p (dash-dot) and GRL
h (solid).

The purely passive performance of resistive and resonant shunt circuits can be evaluated using the frequency response
of the beam tip velocity when the beam is subject to a transverse force at the same point (Figure 2). The reference is
considered to be unitary. It is possible to observe that both shunt circuits affect significantly only the first resonance,
as expected. From which one can conclude that both shunt circuits may yield a vibration amplitude reduction but the
resonant circuit leads to a much better performance (approximately 22 dB vibration amplitude reduction). The resistive
circuit leads to a variation in the resonance frequency, between short-circuit and open-circuit ones, and also induces an
equivalent damping factor. For the resonant circuit, tuning of its resistance allows to reduce amplitude at the structure’s
resonance frequency (i.e. the anti-resonance of the coupled system) at the cost of increasing the amplitude at the two
resonance frequencies of the coupled system.

Then, the LQR state feedback control strategy voltage presented previously was considered to evaluate the control
voltage to be applied to the circuit and actively reduce the vibration amplitude of the beam. For uncontrolled beam (open-
circuit, Rc→∞), passive controlled beam with resistive (Rc = 144 kΩ, Lc = 0, Vc = 0) and resonant (Rc = 31541 Ω, Lc =
390 H, Vc = 0) shunt circuits, and active-passive controlled beam with resistive (Rc = 144 kΩ, Lc = 0, Vc < 200 V ) and
resonant (Rc = 31541 Ω, Lc = 390 H, Vc < 200 V ) shunt circuits. As shown in Figure 3, the active-passive control yields
better performances than its passive counterpart with amplitude reductions of approximately 14 dB (resistive) and 28 dB
(resonant).

5 STOCHASTIC MODELING FOR UNCERTAINTIES ANALYSIS
This section presents an approach for analyzing random uncertainties for dielectric β ε

33 and piezoelectric h̄31 constants
of piezoelectric patch and resistance Rc and inductance Lc of the electric shunt circuits. A similar methodology was
considered to analyse the effect of uncertainties on each one of these four parameters. An appropriate probabilistic
model for each random variable, denoted as X , is constructed accounting for the available information only, which is the
following: (1) the support of the probability density function is ]0,+∞[; (2) the mean values are such that E[X ] =X ; and (3)
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Figure 4: Gamma probability density function and histograms of realizations for material properties β̄ ε
33 and h̄31 and circuit

parameters Rc and Lc.
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Figure 5: Mean square convergence of Monte Carlo simulations considering as uncertain parameters: (a) only Lc and (b) β̄ ε

33, h̄31, Rc
and Lc simultaneously.

zero is a repulsive value for the positive-valued random variables which is accounted for by the condition E[ln(X)] = cX
with |cX < +∞. Therefore, the Maximum Entropy Principle yields the following Gamma probability density functions
for X (Soize, 2001; Cataldo et al., 2009; Ritto et al., 2010).

pX (X) = I]0,+∞[(X)
1
X

(
1

δ 2
X

)δ
−2
X 1

Γ(δ−2
X )

(
X
X

)δ
−2
X −1

exp
(
− X

δ 2
X X

)
(19)

in which δX = σX/X is the relative dispersion of X̂ and σX are their standard deviations. The Gamma function is defined
as Γ(α) =

∫
∞

0 tα−1e−tdt. These probability density functions are shown in Figure 4 together with the histograms of
random sets for each variable generated with MATLAB function gamrnd, considering 5000 realizations. The vectors of
random realizations for X̂ , when considering all four parameters simultaneously, where combined and then applied to the
evaluation of realizations of the FRFs Gp(θ j,ω), Gc(θ j,ω) and Gh(θ j,ω) using equations (2), (4) and (15), respectively.

The mean-square convergence analysis with respect to the independent realizations of random variable Ĝp(ω), denoted
by Gp(θ j,ω) was carried out considering the function

conv(ns) =
1
ns

ns

∑
j=1

∫
‖Gp(θ j,ω)−GN

p (ω)‖2
ω, (20)

where ns is the number of simulations and GN
p (ω) is the response calculated using the corresponding mean model. Fig-

ures 5 shows the mean-square convergence analysis for extension configuration considering δX = 0.10. It is possible
to observe that for both cases 3000 simulations are enough to assure convergence. Despite that, the statistical analyses
presented in the following sections consider all 5000 simulations performed.
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Figure 6: Schematic procedure for the computation of FRFs mean and confidence intervals.

The statistical analyses of the FRF amplitudes were performed using their 5000 realizations at each frequency to
calculate the corresponding mean values and 95% confidence intervals. The 95% confidence intervals were evaluated
using the 2.5% and 97.5% percentiles of the realizations of FRF amplitudes at each frequency. Figure 6 summarizes the
simulation procedure.
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Figure 7: Mean (dashed) and nominal (solid) values and 95% confidence interval (filled) for the frequency response of the controlled
cantilever beam, as compared to OC and SC conditions (dash-dot), subjected to uncertainties in β̄ ε

33. (a) Passive shunt, (b)
active-passive shunt with constant control gain, and (c) active-passive shunt with updated control gain.

As a first analysis, the dielectric constant β̄ ε
33 alone is considered as uncertain according to the Gamma probability

density function described previously. The other three parameters are fixed at their nominal values. Figure 7 shows the



Santos, H.F. and Trindade, M.A.
Vibration control using piezoelectric materials subjected to uncertainties on electrical and material properties

mean, nominal and 95% confidence interval for the frequency response of the controlled cantilever beam subjected to
uncertainties of dielectric constant when using purely passive shunt (open-loop) and active-passive shunt with constant
and variable (updated) control gains. A dispersion of 10% was considered for the dielectric constant and its mean value
coincides with the nominal value β̄ ε

33 = 57.830 106 m F−1. Since it was observed that, as expected, the RL shunt circuit
only affects the frequency response near the first resonance (for which the shunt circuit was designed), Figure 7 is zoomed
near the first resonance. One may notice, from Figure 7a, that the nominal model indicates a passive reduction in the
vibration amplitude of 22 dB (considering the difference between peak responses for OC and RL), while when considering
the uncertainties of dielectric constant this reduction is found to be in the range 16-23 dB. It can be noticed also that the
difference between the mean and nominal FRFs is almost negligible.
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Figure 8: Mean (dashed) and nominal (solid) values and 95% confidence interval (filled) for the frequency response of the controlled
cantilever beam, as compared to OC and SC conditions (dash-dot), subjected to uncertainties in h̄31. (a) Passive shunt, (b)

active-passive shunt with constant control gain, and (c) active-passive shunt with updated control gain.

An analysis of the active-passive vibration control performance may also be observed in Figures 7b and 7c, which
shows the frequency response of uncontrolled (GOC

p ) and controlled structure (GN
h ), including the mean and confidence

intervals. Figures 7b and 7c show that LQR control combined with the resonant shunt circuit allows to reduce further
the vibration amplitude. In the first case (Figure 7b), the control gain vector is fixed at its nominal value while, in the
second case (Figure 7c), the control gain is updated (reevaluated) for each realization of the uncertain parameter, which is
only possible if the dielectric parameter although uncertain could be measured and used to evaluate the control gain. The
nominal model indicates a active-passive reduction in the vibration amplitude of 27.5 dB, while the confidence intervals
indicate a reduction between 24 and 28 dB for fixed control gain (Figure 7b) and between 26 and 28 dB for updated
control gain (Figure 7c).

A similar analysis was performed considering the piezoelectric constant h̄31 as an uncertain parameter, with 10% dis-
persion and h̄31 = −1.3520 109 N C−1 mean value. It is expected that the higher the piezoelectric constant the higher
the vibration amplitude reduction, since this constant affects directly the electromechanical coupling and, thus, the energy
conversion efficiency. From Figure 8a, one may notice that while the nominal model indicates a reduction in the vibra-
tion amplitude of 22 dB, the piezoelectric constant uncertainties lead to a peak-to-peak amplitude reduction confidence
interval similar to the previous case (19-23 dB), although the shape of the confidence interval near the first resonance is
quite different from the previous one (Figure 7a). The 95% confidence intervals for the active-passive control indicate a
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Figure 9: Mean (dashed) and nominal (solid) values and 95% confidence interval (filled) for the frequency response of the controlled
cantilever beam, as compared to OC and SC conditions (dash-dot), subjected to uncertainties in Rc. (a) Passive shunt, (b)

active-passive shunt with constant control gain, and (c) active-passive shunt with updated control gain.

reduction between 25 and 28 dB using a fixed control gain (Figure 8b) and between 26 and 29 dB using updated control
gain (Figure 8c), compared to the nominal amplitude reduction of 27.5 dB.

As for the electric shunt circuit components, the resistance and inductance were then considered as uncertain parame-
ters. In both cases, a dispersion of 10% is considered. The mean values for resistance and inductance are Rc = 31541 Ω

and Lc = 390 H, respectively. In the case of an uncertain resistance, the passive vibration amplitude reduction may be
in the range 21-23 dB (Figure 9), compared to a nominal value of 22 dB. For the active-passive vibration control, the
vibration amplitude reduction is in the range 27-29 dB, using fixed control gain (Figure 9b), or in the range 27-28 dB,
using updated control gain (Figure 9c). These results show that the vibration control performance, both passive and
active-passive, is much less sensitive to the resistance of the shunt circuit. The resistance uncertainties affect mainly the
frequency response at resonance frequency.

On the other hand, the effect of uncertainties of shunt circuit inductance is much more important. As shown in Figure
10, the 95% confidence intervals of the frequency response near the first resonance are similar to those observed in
Figure 7 corresponding to uncertainties of dielectric constant. Both parameters affect the shunt electric circuit resonance
frequency and thus the proper tuning between the target frequency (structural resonance frequency) and the electric circuit
resonance frequency. This mistuning seems to have also a greater effect on the peak-to-peak vibration amplitude reduction.
The predicted passive reduction stands between 16 and 23 dB (Figure 10a), while the active-passive one is in the range
24-28 dB (Figure 10b), for fixed control gain, and 26-28 dB, for updated control gain (Figure 10c).

Finally, it is worthwhile to analyse the effect of uncertainties of the four parameters simultaneously on the passive
and active-passive vibration amplitude reduction. Both dispersion and mean values are the same as the ones used in the
individual analyses. In this case, a wider confidence interval should be expected. Indeed, as shown in Figure 11, both
passive and active-passive vibration control performance are affected around the first resonance. The inductance and
dielectric constant affect the amplitude mainly near the invariant frequencies, the resistance affect the amplitude mainly
near the resonance frequency and the piezoelectric constant affect the amplitude over a wider frequency range. Thus, the
combination of the four parametric uncertainties effects leads to a more spreaded variation of the amplitude reduction.
Considering the peak-to-peak vibration amplitude reduction, the stochastic model predicts an amplitude reduction between
14 and 26 dB, for the passive shunt (Figure 11a), between 22 and 29 dB, for active-passive shunt with fixed control gain
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Figure 10: Mean (dashed) and nominal (solid) values and 95% confidence interval (filled) for the frequency response of the controlled
cantilever beam, as compared to OC and SC conditions (dash-dot), subjected to uncertainties in Lc. (a) Passive shunt, (b)

active-passive shunt with constant control gain, and (c) active-passive shunt with updated control gain.

(Figure 11b), and between 25 and 29 dB, for active-passive shunt with updated control gain (Figure 11c).

6 CONCLUSIONS
This work has presented an analysis of active-passive vibration control using Active-Passive Piezoelectric Networks

subject to parametric uncertainties in the shunt circuit components and piezoelectric material properties. This was done
using a finite element model, which fully accounts for the structure/piezoelectric elements/circuits interaction, combined
to stochastic modeling techniques to evaluate confidence intervals for the vibration control performance. Results for
the first vibration mode of a cantilever beam with piezoceramic patches connected to active-passive shunt circuits were
presented and discussed. It was shown that the inductance and dielectric constant affect the amplitude mainly near
the invariant frequencies, the resistance affect the amplitude mainly near the resonance frequency and the piezoelectric
constant affect the amplitude over a wider frequency range. Thus, the combination of the four parametric uncertainties
effects leads to a more spreaded variation of the amplitude reduction. Considering the peak-to-peak vibration amplitude
reduction, the stochastic model predicts an amplitude reduction between 14 and 26 dB, for the passive shunt, between
22 and 29 dB, for active-passive shunt with fixed control gain, and between 25 and 29 dB, for active-passive shunt with
updated control gain.
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